Can’t Buy Me Bugs

Why exterminate them when you can eat them?

How can we begin to reconcile our conflicting experience with bugs?


No amount of money can compensate for millions of dead insect species. Money can’t buy me love, pollination, honey, food – or complex, dynamic relationships among insects, plants, soil and greenhouse gases. When insect species disappear, the magical mystery Magicicada musical will be silenced, and the trees, turtles, fish and birds will suffer as they lose that periodic extravagance of fertilizer and feed. The insectivorous birds will disappear. Flowers will bloom once and then wrinkle and waste away. Once honey bees are gone, or monarch butterflies, or dung beetles, shareholder profits will not bring them back. In the pesticide and fertilizer whorehouses, money can buy a one-night stand, a few seasons of corn or soy or canola. Pesticides provide temporary, short-term, transitional satisfaction for managing our culinary desires.

Environmental engineer M. Premalatha, in a 2011 scholarly review titled “Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects,” commented that “The supreme irony is that all over the world monies worth billions of rupees are spent every year to save crops that contain no more than 14 percent of plant protein by killing another food source (insects) that may contain up to 75 percent of high quality animal protein.” The global agri-food system – the economy in general – however, does not run on irony.

How can we begin to reconcile, in practice, and not just in our heads and hearts, our conflicting experience with, and mixed feelings about, bugs?

People already eat locusts so that, at first glance, one strategy to control insect pests without using insecticides would be to eat them. It is a crude strategy, and has been tried. With a few exceptions, eating insect pests has not been very successful in controlling them. Still, in a search for non-toxic strategies to manage human-insect-food relationships, it is worth looking at those exceptions.

Between May and September, harvesters from Santa Marıa Zacatepec (Puebla) head out into the fields before dawn. They are able to capture 50 to 70 kilograms of grasshoppers per week – 75 to 100 tonnes per year.

In Thailand, in the 1970s, there was an outbreak of patanga locust (Patanga succincta) in maize. When aerial spraying of insecticide failed, the government promoted eating them, and even promulgated recipes. Today, deep-fried patanga is popular, and the species isn’t considered a serious pest. There are even farmers now who grow maize to feed the locusts, which bring a better price. Food? Pest? Yes. And yes. And most assuredly 50 years of exposure to eating locusts is better for one’s health than 50 years of exposure to pesticides, no matter how low the residues.

About 80 species of grasshoppers and locusts are eaten worldwide. Although there is a lot of variation in their nutrient content, most locusts, with about 60 percent protein and 13 percent fat (dry weight), are right up there with cows and cockroaches as excellent sources of human nutrition. Nor is this, for many people, a “novel” food source. There is a long history of humans around the world eating locusts and grasshoppers. Studies of human feces at Lakeside Cave in Utah indicate that, at various times going back 4,500 years, hunter-gatherers near the Great Salt Lake sometimes ate locusts and grasshoppers. Millions of grasshoppers and/or locusts periodically crash-landed into the waters of the Great Salt Lake. Washed up on the shore, naturally salted and sun-dried, they became a grand buffet. More recent ethnographic and ethnohistorical studies revealed that grasshoppers and crickets have been part of the diets of some Indigenous people in that area well into the late 19th and early 20th centuries.

So when I read of the locust plagues that devastated large parts of Madagascar in 2012 and several years following, my mind drifted to the possibilities of fall-season soups and mock-raisin breads. I wondered whether people could just eat the locusts. Why not? Well, they could, but it’s not so simple. The voracious locusts swarms destroyed rice fields and pastures, causing hunger and threatening the food security of 13 million people. Making a bad situation even worse, the plague hit the news just before Passover, and hence, in the Judeo-Christian-Islamic imagination of Western societies, resonated with biblical implications. It was both a devastating plague and a public relations nightmare. International and government agencies sprayed insecticides to manage the hungry pests, thereby contaminating a possible alternative food supply. Some children, though, were catching them by hand or in mosquito nets, drowning them, and roasting or frying them. Other farmers explained that the locusts might be a good source of food, but they did not keep as well in storage as rice. They rotted. There was no generic, one-size-fits-all response to the locusts. To address this would require facing the challenge of stopping the plague and, at the same time, developing new ways to harvest, store, and preserve the locusts for food. Given the cultural dynamics of post-colonial societies, and the sense of embarrassment that may accompany eating “bugs” in front of Europeans, this would require a lot of courage and engagement with people where they lived, talking to farmers, elders, cooks, children, and some major rethinking of strategies and appropriate, innovative technologies.

In Lockwood’s description of the American locust plagues, he notes that some farmers were initially happy that their poultry were stuffing themselves on locusts. This happiness disappeared when their chickens and turkeys gorged themselves to death. The farmers managed this lethal feasting by giving the birds a bit of grain before turning them loose on the locusts. But still, there were so many! Too many! More problematically, the farmers later reported that the flesh and eggs of these poultry were inedible, exuding a pungent, oily odour. Others lamented the great stench of rotting carcasses along the lakeshore and in ponds, streams, and wells. Again, one of the issues that this raises is how best to harvest and preserve sudden windfalls of food. This is an intense, special case of the issues faced by all human settlements for more than 10,000 years. It has been a driving force behind the long histories of fermentation, salting, sugaring, refrigeration, drying, vacuum-packing, and, more recently, genetic modification of fresh produce to extend shelf-life. I have the sense that, were we to take insects seriously as food, we could solve the storage and preservation problems as we have for grains, breads, dairy products and fresh produce. In pre-Euro-invasion America, some Indigenous groups came up with the ingenious idea of making a “desert fruitcake” of insects, pine nuts and berries, mashed together and sun-dried. The Honey Lake Paiute prepared a soup of dried crickets and locusts. The Japanese have produced hornet pickles and alcoholic drinks, Europe has its history of mead, and a group in the United States is now testing beer fermented with yeasts carried by wasps. The possibilities may not be endless, but the list of preservation methods is most assuredly long.

In Mexico, some species of grasshoppers are considered serious pests of corn, beans, alfalfa, squash and broad beans. Since the 1980s, many farmers have tried to control them through spraying organophosphate insecticides (mostly parathion and malathion, both of which are considered relatively nontoxic to people). The grasshoppers are also recognized as a source of food, an Aztec tradition going back at least 500 years. Even today, between May and September, harvesters from Santa Marıa Zacatepec (Puebla) head out into the fields before dawn. They are able to capture 50 to 70 kilograms of grasshoppers per week – 75 to 100 tonnes per year. The annual sale of this grasshopper harvest brings in $3000 USD per family; for six months, this provides the main source of income for these people.

This is all well and good for the harvesters, but what about the farmers who want to control the pests? Two researchers from the Universidad Nacional Autonoma de Mexico decided to find out. Over two years in the first decade of this century, Rene Cerritos and Zenon Cano-Santana monitored grasshopper infestations in field plots that had been sprayed, and compared them to plots where grasshoppers were harvested manually. Although the lowest grasshopper infestation rates were in fields that were treated with insecticides, the researchers concluded that mechanical control still reduced the infestation to manageable levels, saved the farmers $150 USD annual costs for insecticides, brought extra income into the village, reduced risks associated with water and soil contamination, and eliminated negative effects on non-target species. Mechanical harvesting had the added social advantage that it required farmers and harvesters to talk to each other and coordinate their activities. The World Bank used to call this social capital, and, in a region where social breakdown is a problem, this is not a trivial advantage.

In the long run, we need these kinds of alternative commitments. Complex eco-social systems are more resilient at resisting pest infestations, but nurturing those will take some serious rethinking of how we live. In the meantime, can we find ways of living, however uneasily, together with insects? Although the Soviet Union and the United States never fought their ideologically based wars directly, the bloody battles in Guatemala, Nicaragua, Honduras, Uruguay, Angola, Mozambique, Cambodia and Vietnam were surrogates. Non-Russians and non-Americans died in large numbers to keep alive the Russian and American dreams of world domination. That is how empires work. Similarly, since Rachel Carson’s documentation of the unintended negative consequences of pesticides entered the public discourse, the war against pestiferous insects has not stopped, merely shifted. The war metaphors, having informed medical practice, are now, in the language of surgical strikes, coming full circle, and creating a mythology that offers at least the illusion of killing no innocent bystanders.

One of the most widely known and practiced strategies to control insect populations with minimal collateral damage is what has been called companion planting (by friendly gardeners) and intercropping (by more serious business farmers). More than 1500 species of plants have some insecticidal properties, but even non-insecticidal plants can provide some field-wide resistance to the spread of pests. Another strategy is to bring in other insects that prey on or parasitize the ones you don’t want (the pest-control equivalent of surrogate wars). More recently the use of pheromones, genetic modification and playing distressing, infuriating music have been tried. I’ll only talk about a few of them to make the point that, even if some agribusiness leaders support the contestable and doubtful assertion that pesticides are necessary to feed the world, we have options other than starvation and revolution.

This article is a shortened version of an article that David Waltner-Toews adapted from the chapter “Can’t Buy Me Bugs: A New Age of Negotiation” in his latest book Eat the Beetles! An Exploration into Our Conflicted Relationship with Insects (ECW Press, Toronto). Read the full A\J exclusive adaptation at ajmag.ca/CantBuyMeBugs.